Nunavut Housing Corporation

November 2013

202 Apert 448c

Pan-Territorial Permafrost Workshop
Climatic Adaptations to Construction
in Nunavut

Agenda

- Basic Facts About Nunavut
- Logistical Challenges
- Permafrost Foundation Types in Use by NHC
- Challenges
- NHC Needs

Nunavut Basic Facts

- 33,980 people in 25 isolated communities
 - Population ranges from 140 to 3,300; 7,000 in Iqaluit the Capital.
- Total dwellings: 10,000
 - Ranging from 60 to 800 dwellings per community;
 2,560 in Iqaluit
- 1.9 million km²
 - Representing 20% of Canada's land mass
 - Double the size of Ontario
- No road or rail access

- ---Kugluktuk to Pangnirtung 1800km (East/West)
- ---Grise Fiord to Sanikiluaq 1850km (North/South)

Shipping Challenges

- Heavy reliance on maritime shipping.
- Limited shipping season presents logistical challenges.
- Late summer or early fall shipping limits construction season even further.

Shipping Challenges

- Sealift often arrives after the first snow.
- Daylight hours are decreasing.
- Often requires a two-year construction cycle.
- Extra Cost

Shipping Challenges

Unpredictable conditions can further cause upset to construction schedules

Shipping Challenges – Air

- After sealift season, all supplies must be delivered through air cargo.
- Air cargo is very expensive with costs into the hundreds of thousands.
- Some items are too large to fly in and aircraft size is limited in communities with short runways.

Permafrost Foundations

- Foundations are structured to ensure that the heat from buildings does not induce thawing of the permafrost below
- Thaw bulbs occur when houses sit on permafrost OR enclosed skirting on raised houses traps lost heat and warms the area beneath the house.

Steel Pile Foundations

- The majority of public housing, homeowner housing built on steel piles.
- Piles are long steel pipes driven into the ground to stabilize the buildings into the <u>permafrost</u> or bedrock.
- Adfreeze piles which rely on permafrost have been either discontinued or are being driven deeper due to increased permafrost active layer depth.

TYPICAL PILE TO BEDROCK DETAIL TYPICAL AD-FREEZE PILE DETAIL

Steel Pile Foundations

- Low life-cycle cost.
- Minimal site preparation required.
- Building is elevated to allow air flow under building to help protect permafrost.

Pile Jacking

- Failures do occur.
- Failures are more frequent with adfreeze piles which rely on permafrost.
- Solutions often involve abandoning the adfreeze pile foundation

Timber Block Foundations

CRIBBING

- Many public housing, homeowner housing built on cribbing.
- Perpendicular stacked wood members with an adjustable wedge to compensate for frost heave.
- Limited to use for small buildings.

Screw Jack Foundations

- Many public housing, homeowner housing built on screw-jacks.
- Prefabricated jack stands mounted on a grade level spread footing.
- Limited to use for small buildings.

Spaceframe Foundations

- Larger multi-plex housing built on Spaceframes.
- Pre-manufactured frame members installed on site.

Foundations on Grade

- Use becoming prohibitive due to the need for relatively level sites.
- Requires a greater level of site development to provide a level and well drained structural pad.
- Require frequent adjustment in areas of unstable soil.

Thermosyphons

- Flat-loop thermosyphon systems.
- Use typically reserved for larger buildings.
- No current installations within NHC's owned infrastructure.
- Generally cost prohibitive in terms of housing projects.

Site Selection

- In addition to how to build, knowing where to build is also important.
- Despite best efforts to select appropriate sites, unexpected hazards do occur.
- Site selection is becoming more difficult as premium land becomes less available leaving us with second or third best options.

NHC Needs

NHC Needs include:

- Improvements on existing technologies and new technologies to support affordable and sustainable development.
- Identification of solutions to adapt existing stock to the changing environment.

NHC Needs

NHC Needs include:

 Identification of hazards that will allow informed decisions in terms of future development.

Conclusion

- •For over 40 years, there have been varying levels of residential construction by the territorial government throughout Nunavut.
- •Diverse geology and geography create a variety of challenges to construction in the north. As technologies advance, new construction methods emerge.
- •Building on permafrost is not a new issue for Nunavut but an ongoing challenge, one which is not insurmountable.

