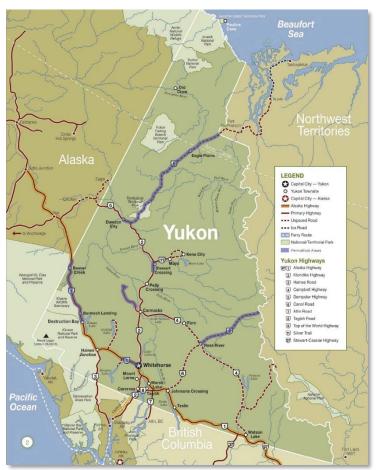
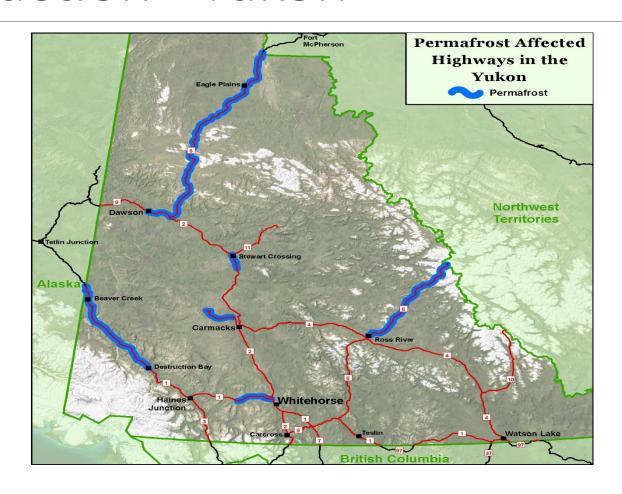
Permafrost Hazard Mapping for Yukon Highways


Presentation by

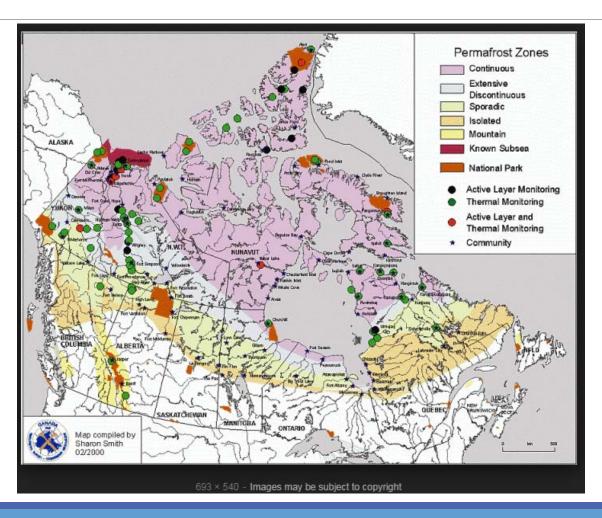
Muhammad Idrees, P.Eng, M.Eng
Manager, Geotechnical and Materials Program
Highways and Public Works, Government of Yukon

Introduction - Yukon


- Area 483,450 km²
- Population ~38,000
- 17 communities
- 4,808 km of maintained highway
 - Asphalt pavement 310 km;
 - BST 1,930 km;
 - Gravel 2,568 km; and
 - 132 bridges.
- ~25% impacted by permafrost degradation

Introduction - Yukon

Systematic Approach to mitigate the effects of permafrost thaw

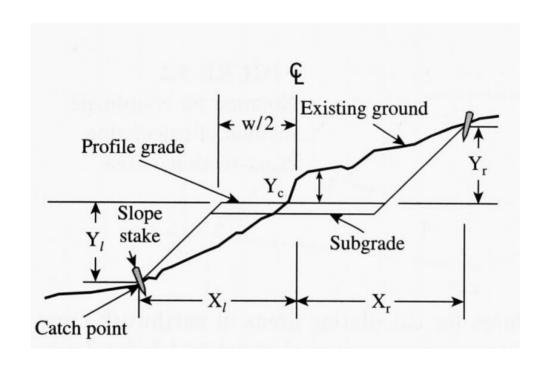


- Generic Maps and visual observation
- Detailed permafrost maps
- Vulnerability Maps
- Site Selection for mitigation techniques
- Thermal analysis and modelling of potential mitigation techniques
- Selection and detailed design of mitigation technique
- Supply and installation of mitigation technique
- Monitoring

Permafrost General Maps

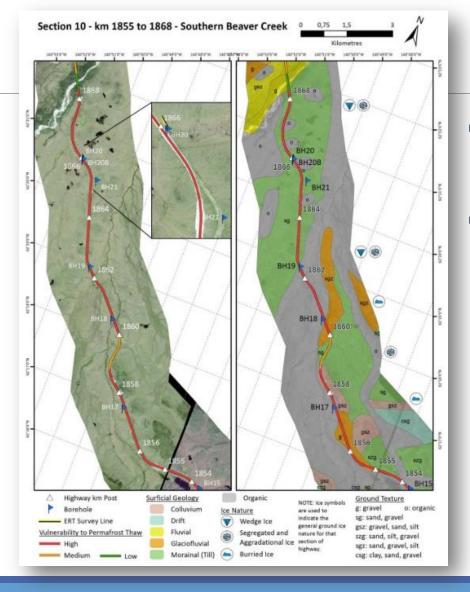
- Generic Maps are good to have better understanding of the permafrost in Canada but are they good for construction of new roads or rehabilitation of existing roads?
- Probably need more detailed maps for alignment of new roads and even rehabilitation of existing roads, like vulnerability maps

Important Factors in Road Design


Non Permafrost Areas

- Short distance with detailed Geotechnical information
- Minimum river and creek crossings
- Avoiding significant geo hazards
- Balanced cut and fill

Permafrost affected Areas


- All above factors but no cut
- Avoid ice rich/massive ice bodies
- Alignment in coarse grained soil vs fine grained soil, need extensive geotechnical information

Earthwork Cross-Sections

Vulnerability https://yukoncollege.yk.ca/downloads/permafrost_report.pdf

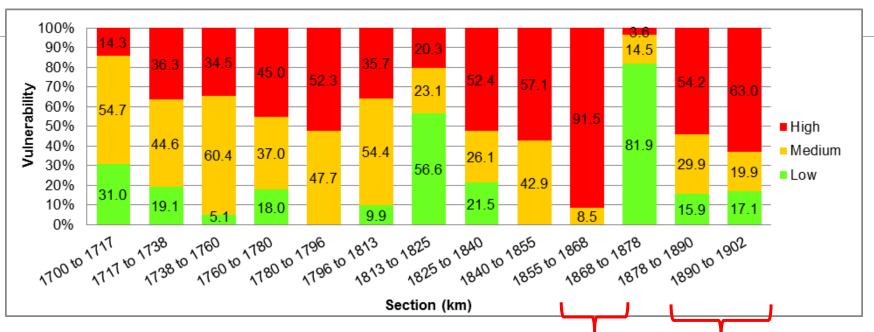
- **Vulnerability of North** Alaska Highway km 1700 to km 1902
- 3 years project with NCE Yukon College, 2012-2015, funded by **INAC** and Climate **Change Secretariat Government of Yukon**

43% highly vulnerable:

- **Intense Subsidence**
- **Long duration**

38% moderately vulnerable:

- **Short Duration**
- Moderate subsidence

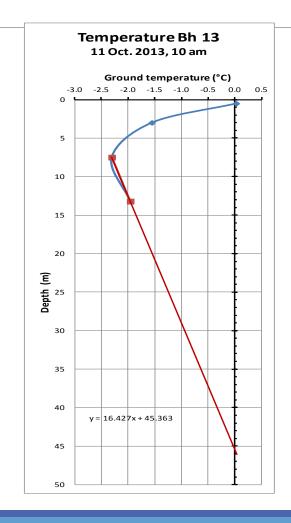

19% low vulnerability

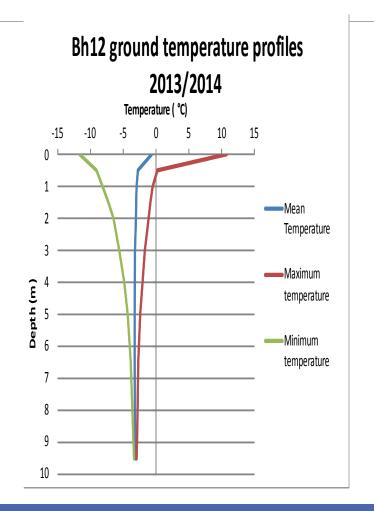
- No permafrost
- No ground movement

Vulnerability

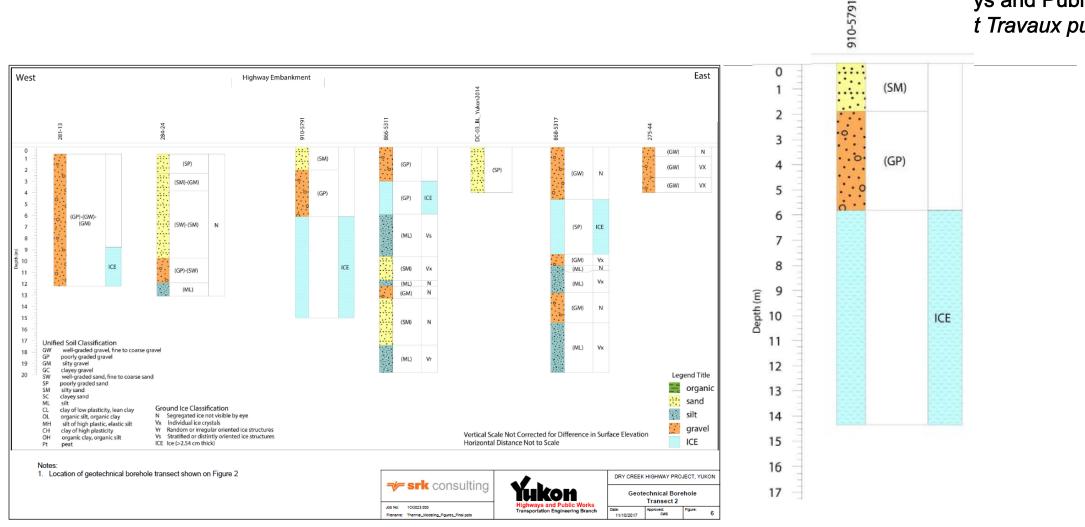
High

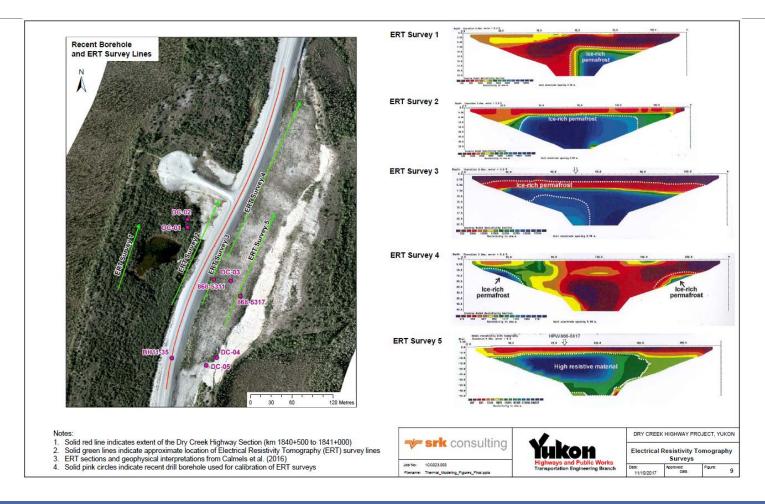
Moderate


Low


Glaciofluvial massive ice
Unglaciated | wedge ice

Techniques for vulnerability mapping


- Geotechnical Investigation (borehole logs), permafrost sample analysis
- Ground Temperature and Climate Monitoring
- Geophysical Techniques (ERT etc)
- Lidar and Imagery data
- Geological Maps


Techniques for vulnerability mapping

Techniques for vulnerability mapping

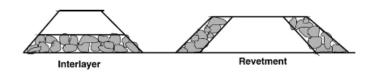
Identification of Sites, Potentially Responsive to Mitigation Techniques, 4th year Extensions

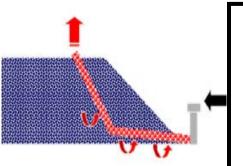
Description of Site Factors

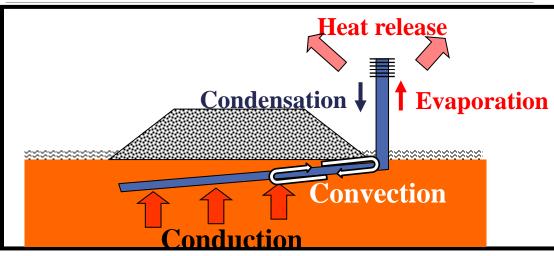
- Solar Radiation
- Wind
- Precipitation
- Snow Cover
- Embankment Slope and Orientation
- Vegetation Cover
- Drainage
- Soil Types
- Ground Ice Conditions
- Ground Temperature

Mitigation Techniques

- Air Convection Embankment (ACE)
- Heat Drains
- High Albedo Surface
- Insulation
- Thermosyphons




Figure 3.3. Various ACE embankment configurations


Identification of Sites, Potentially Responsive to Mitigation Techniques, 4th year Extensions

High Albido Surface

Thermosyphons

- Extract heat during the winter
 - > Expensive and localised

Identification of Sites, Potentially Responsive to Mitigation Techniques, 4th year Extensions

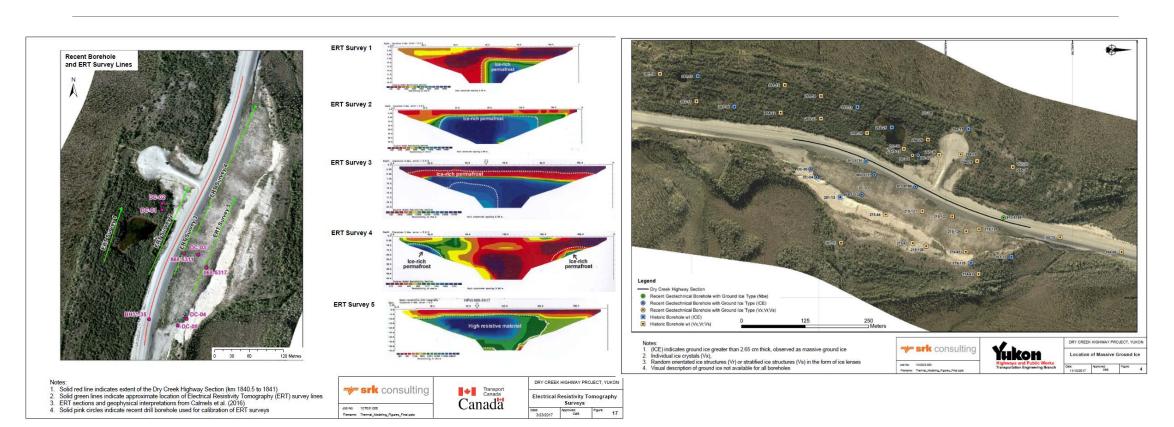
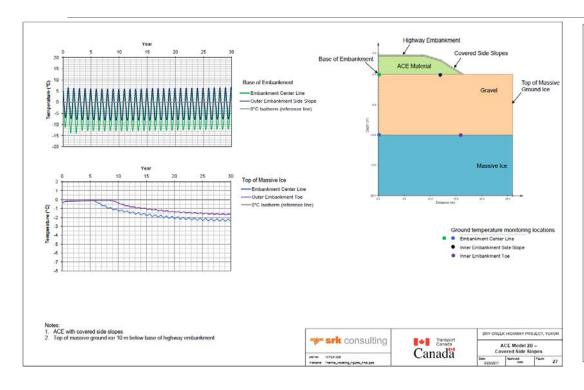
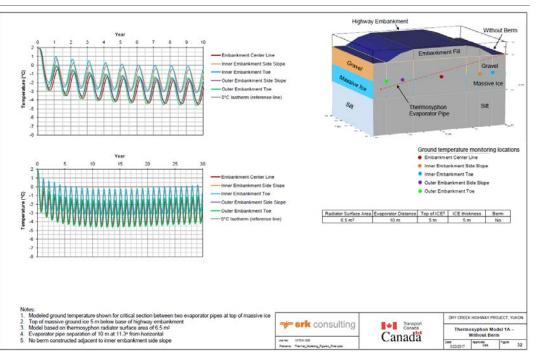


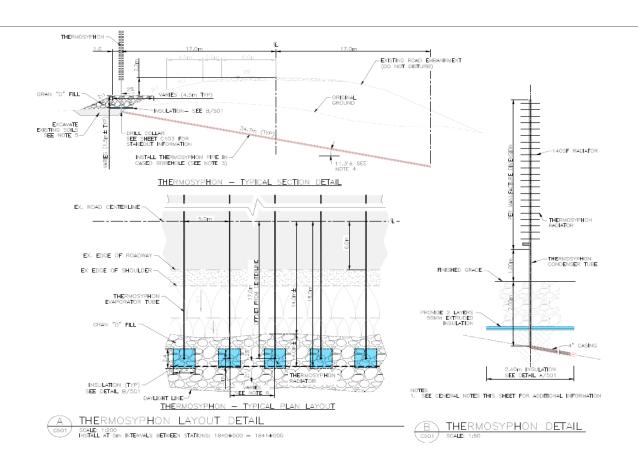
Table 3.3: Effectiveness, height requirement, implementation and strength/durability considerations

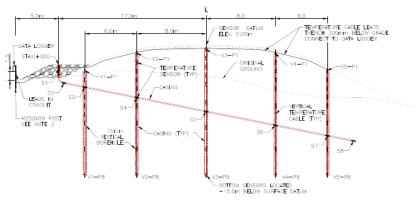
Mitigation Techniques	Effectiveness (based on literature)	Height/Depth Requirement	Implementation Consideration	Strength / Durability Considerations		
ACE	Depends on the design. Rising mean annual ground temperature generates more cooling.	Minimum height of embankment ≥ 2.5 m	Uncovered ACE is sensitive to fine soil particles intrusion. Local availability of suitable aggregates may be problematic. Orientation of embankment with respect to intensity of solar radiation and	The high strength of the stones makes it suitable for many conditions such as heavy loads and it also provides very low		
	Measurable rise of permafrost table and decrease of embankment temperature.		wind direction should be considered when designing ACE.	maintenance. If settlement happens, it will lose efficiency but will keep working.		
	Less severe settlements and stabilization over time.					
HD	Measurable rise of permafrost table and decrease of embankment temperature.	Minimum height of embankment	Labour-intensive (manual installation). Avoid installation during windy day.	During installation, a layer of sand must carefully be place on HD for protection. Puncture or		
	competition.	≥ 2.0 m	Need to carefully respect the design.	compression by heavy equipment must be avoided.		
	Measurable decrease of surface	No specific embankment height	Availability of light-colored aggregate may be problematic.	Durabilia, has a day substitution		
HAS	temperature.	requirement	High albedo coatings need to respect specification for northern use.	Durability has a close relationship with the material quality.		
Thermosyphons	Measurable rise of permafrost table and decrease of embankment temperature.	crease of embankment embankment height adjust to the site conditions.		 If a puncture of the tube occurs, the pressurization is lost and the tube will no longer function correctly. 		
Insulation	Promote thermal stability and delays thawing.	Depth of insulation varies from 0.5 m	Avoid trapping heat in the ground under the insulation layer by implementing in winter/early	Sensitive to mechanical damage. Insulation material has to be		
	May not reverse warming trend.	above natural ground surface to 0.8 m below the embankment surface (Zhi, et al., 2005).	spring. Relatively easy to construct. Insulation properties may be reduced by the potential for water absorption and compression or breaking of the material. Insulation layer thickness, width, and embedded depth must be adjust to site conditions.	installed deep enough to prevent crushing from cyclic wheel loadings and to reduce the risk of differential icing at the surface of the pavement.		





Thermal Analysis ACE Embankment vs Thermosyphons at Dry Creek





Thermosyphons at Dry Creek, 2018-2021

HORIZONTAL TEMPERATURE CABLE SENSOR LOCATIONS				
SENSOR	STATION			
S1	0+000.5			
S2	0+003.0			
53	0+00,5,5			
S4	0+011.6			
S5	0+019.8			
S6	0+028.0			
S7	0+034.1			
SB	0+037.2			

	ELEVATION DEPARTURE FROM DATUM ELEVATOIN				
SENSOR POSITION	V1	V2	V3	V4	V4
(m)	11,00	17.00	25.00	33.00	40.00
P1	-3.0	-1.0	-0.5	-1.0	-3.0
P2	-4.0	-2.0	-1.5	-2.0	-4
P3	-6,0	-3.0	-2.5	-3.0	-5
P4	-7.0	-4.0	-3.5	-4.0	-6
P5	-8.0	-5.0	-4.5	-5.0	-7.0
P6	-9.0	-7.0	-7.0	-7.0	-9.0
P7	-12.0	-9.0	-9.5	-12,0	-12.0
PB	-15.0	-12.0	-12.0	-15.0	-15,0
P9		-15.0	-15,0		

Temperature Monitoring Station - Stakeout Information

	Centerline Information		Borehole Location (17m offset from Centerline)					
Borehole	Station.	Station. Centerline Flev. Offset Collar Flevation Colla		Collar Posit	tion	Borehole Azimuth	Borehole Dip	
No.		(CL Elev.)	(m)	CL Elev - 4.2m	Northing	Easting	[North Azimeth]	Degrees
11	1840+552.50	/84.67	17 K	/30,47	6892243.8725m SC	.6466.2572m	289111 26.7151	11.5
12	18404752,50	735.21	17.8	732 X	0092421.5002m 50	.6579.9194m	297 71 13.4691	11.3
T.E	1840(952.50	784.80	17 B	739.52	6892612.0717m 51	6517.7728m	235135.54.9271	11.5

GROUND TEMPERATURE MONITORING STATION — DETAIL

02 SCALE: 1:200 INSTALL AT STATIONS; 1940+552.50, 1940+752.50, 1940+952.50 SEE GENERAL CONSTRUCTION NOTES FOR MORE INFORMATION

Thank You

